Sabtu, 15 September 2012

Bahan Bakar

BAHAN  BAKAR


  Dibuat oleh :
NAMA    : ADIKA  ABDUL  ROHMAN  S.
NIM        : 10509134030
KELAS   : D2

JURUSAN TEKNIK OTOMOTIF
FAKULTAS TEKNIK
UNIVERSITAS NEGERI YOGYAKARTA
2012




I.  PENGERTIAN BAHAN BAKAR
Bahan bakar adalah suatu materi apapun yang bisa diubah menjadi energi. Biasanya bahan bakar mengandung energi panas yang dapat dilepaskan dan dimanipulasi. Kebanyakan bahan bakar digunakan manusia melalui proses pembakaran (reaksi redoks) dimana bahan bakar tersebut akan melepaskan panas setelah direaksikan dengan oksigen di udara. Proses lain untuk melepaskan energi dari bahan bakar adalah melalui reaksi eksotermal dan reaksi nuklir (seperti Fisi nuklir atau Fusi nuklir). Hidrokarbon (termasuk di dalamnya bensin dan solar) sejauh ini merupakan jenis bahan bakar yang paling sering digunakan manusia. Bahan bakar lainnya yang bisa dipakai adalah logam radioaktif.

II. JENIS-JENIS BAHAN BAKAR
1.      Berdasarkan materinya
·         Bahan bakar padat
Bahan bakar padat merupakan bahan bakar berbentuk padat, dan kebanyakan menjadi sumber energi panas. Misalnya kayu dan batubara. Energi panas yang dihasilkan bisa digunakan untuk memanaskan air menjadi uap untuk menggerakkan peralatan dan menyediakan energi.
·         Bahan bakar cair
Bahan bakar yang berbentuk cair, paling populer adalah bahan bakar minyak atau BBM. Selain bisa digunakan untuk memanaskan air menjadi uap, bahan bakar cair biasa digunakan kendaraan bermotor. Karena bahan bakar cair seperti Bensin bisa dibakar dalam karburator dan menjalankan mesin.
·         Bahan bakar gas
Bahan bakar gas ada dua jenis, yakni Compressed Natural Gas (CNG) dan Liquid Petroleum Gas (LPG. CNG pada dasarnya terdiri dari metana sedangkan LPG adalah campuran dari propana, butana dan bahan kimia lainnya. LPG yang digunakan untuk kompor rumah tangga, sama bahannya dengan Bahan Bakar Gas yang biasa digunakan untuk sebagian kendaraan bermotor.
           
2.      Berdasarkan materinya
·         Bahan bakar tidak berkelanjutan
Bahan bakar tidak berkelanjutan bersumber pada materi yang diambil dari alam dan bersifat konsumtif. Sehingga hanya bisa sekali dipergunakan dan bisa habis keberadaannya di alam. Misalnya bahan bakar berbasis karbon seperti produk-produk olahan minyak bumi.
·         Bahan bakar berkelanjutan
Bahan bakar berkelanjutan bersumber pada materi yang masih bisa digunakan lagi dan tidak akan habis keberadaannya di alam. Misalnya tenaga matahari.

III. BAHAN BAKAR PADAT ( BATUBARA )
Pada hal ini bahan bakar yang kita bahas adalah batu bara.
1.      Klasifikasi Batubara
Batubara diklasifikasikan menjadi tiga jenis utama yakni antracit, bituminous, dan lignit. Antracit merupakan batubara tertua jika dilihat dari sudut pandang geologi, yang merupakan batubara keras, tersusun dari komponen utama karbon dengan sedikit kandungan bahan yang mudah menguap dan hampir tidak berkadar air. Lignit merupakan batubara termuda dilihat dari pandangan geologi. Batubara ini merupakan batubara lunak yang tersusun terutama dari bahan yang mudah menguap dan kandungan air dengan kadar fixed carbon yang rendah. Fixed carbon merupakan karbon dalam keadaan bebas, tidak bergabung dengan elemen lain. Bahan yang mudah menguap merupakan bahan batubara yang mudah terbakar yang menguap apabila batubara dipanaskan.

2.      Sifat Fisik dan Kimia Batubara
Sifat fisik batubara termasuk nilai panas, kadar air, bahan mudah menguap dan abu. Sifat kimia batubara tergantung dari kandungan berbagai bahan kimia seperti karbon, hidrogen, oksigen, dan sulfur.
Nilai kalor batubara beraneka ragam dari tambang batubara yang satu ke yang lainnya.
3.      Analisis batubara
Terdapat dua metode untuk menganalisis batubara: analisis ultimate dan analisis proximate. Analisis ultimate menganalisis seluruh elemen komponen batubara, padat atau gas dan analisis proximate meganalisis hanya fixed carbon, bahan yang mudah menguap, kadar air dan persen abu. Analisis ultimate harus dilakukan oleh laboratorium dengan peralatan yang lengkap oleh ahli kimia yang trampil, sedangkan analisis proximate dapat dilakukan dengan peralatan yang sederhana.

IV.  BAHAN BAKAR CAIR ( MINYAK BUMI )
Minyak bumi (bahasa Inggris: petroleum, dari bahasa Latin petrus – karang dan oleum – minyak), dijuluki juga sebagai emas hitam, adalah cairan kental, coklat gelap, atau kehijauan yang mudah terbakar, yang berada di lapisan atas dari beberapa area di kerak Bumi. Minyak bumi terdiri dari campuran kompleks dari berbagai hidrokarbon, sebagian besar seri alkana, tetapi bervariasi dalam penampilan, komposisi, dan kemurniannya.

1.      Komposisi

Komponen kimia dari minyak bumi dipisahkan oleh proses distilasi, yang kemudian, setelah diolah lagi, menjadi minyak tanah, bensin, lilin, aspal, dll.
Minyak bumi terdiri dari hidrokarbon, senyawaan hidrogen dan karbon.
Empat alkana teringan- CH4 (metana), C2H6 (etana), C3H8 (propana), dan C4H10 (butana) - semuanya adalah gas yang mendidih pada -161.6 °C, -88.6 °C, -42 °C, dan -0.5 °C, berturut-turut (-258.9°, -127.5°, -43.6°, dan +31.1° F).
Rantai dalam wilayah C5-7 semuanya ringan, dan mudah menguap, nafta jernih. Senyawaan tersebut digunakan sebagai pelarut, cairan pencuci kering (dry clean), dan produk cepat-kering lainnya. Rantai dari C6H14 sampai C12H26 dicampur bersama dan digunakan untuk bensin. Minyak tanah terbuat dari rantai di wilayah C10
Minyak pelumas dan gemuk setengah-padat (termasuk Vaseline®) berada di antara C16 sampai ke C20.
Rantai di atas C20 berwujud padat, dimulai dari "lilin, kemudian tar, dan bitumen aspal.

Titik pendidihan dalam tekanan atmosfer fraksi distilasi dalam derajat Celcius:
·       Minyak eter: 40 - 70 °C (digunakan sebagai pelarut)
·       Minyak ringan: 60 - 100 °C (bahan bakar mobil)
·       Minyak berat: 100 - 150 °C (bahan bakar mobil)
·       Minyak tanah ringan: 120 - 150 °C (pelarut dan bahan bakar untuk rumah tangga)
·       Kerosene: 150 - 250 °C (bahan bakar mesin jet)
·       Minyak gas: 250 - 350 °C (minyak diesel/pemanas)
·       Minyak pelumas: > 300 °C (minyak mesin)
·       Sisanya: tar, aspal, bahan bakar residu

Beberapa ilmuwan menyatakan bahwa minyak adalah zat abiotik, yang berarti zat ini tidak berasal dari fosil tetapi berasal dari zat anorganik yang dihasilkan secara alami dalam perut bumi. Namun, pandangan ini diragukan dalam lingkungan ilmiah.

2.      Bahan Bakar hasil pengolahan minyak bumi

Hasil pengolahan minyak bumi merupakan bahan bakar dan dapat kita golongkan kedalam beberapa kelompok; gas-gas hidrokarbon ringan, bensin (gasoline), kerosin, bahan bakar pesawat jet dan minyak diesel, minyak bakar dan produk-produk lainnya, perhatikan bagan 1.1.
bagan 10.21
Bagan 1.1. Hasil pengolahan minyak bumi
Gas hidrokarbon ringan merupakan senyawa paraffin dengan titik didih normal <30oC pada tekanan 1 atmosfer berwujud gas, seperti metana (CH4), etana (C2H6), propane (C3H8), dan n-butana (C4H10). Propane dan butane biasanya dicairkan untuk dijual sebagai LPG (Liquefied Petroleum Gases) bahan bakar rumah tangga.
Produk utama pengolahan minyak bumi awalnya adalah Bensin yang merupakan campuran kompleks dari ratusan hidrokarbon dan memiliki rentang pendidihan antara 30-200oC. Bensin adalah bahan bakar alat transportasi darat (mobil).
Kerosin, bahan bakar pesawat jet dan minyak diesel rentang titik didih yang mirip. Kerosin disebut juga dengan minyak tanah dan digunakan sebagai bahan bakar rumah tangga, memiliki rentang titik antara 175-275o C.
Bahan bakar pesawat jet memiliki dua daerah rentang titik didih, yang pertama antara 175-290o C di pergunakan untuk keperluan sipil, dengan kadar aromatik maksimum 20% volum. Sedangkan untuk keperluan militer rentang didihnya antara 65-290 oC dengan kadar aromat maksimum 25% volum.
Minyak diesel adalah bahan bakar untuk mesin diesel sering disebut dengan solar. Minyak diesel memiliki rentang titik didih antara 175-340o C. Sedangkan untuk mesin diesel kereta api rentang titik didihnya antara 180-370o C.
Produk minyak bakar dibagi dalam lima jenis yaitu minyak bakar no. 1, no. 2, no. 4, no. 5 dan no. 6. Minyak bakar no. 1 sangat mirip kerosin tetapi memiliki rentang titik akhir pendidihan lebih tinggi. Minyak bakar no. 2 adalah minyak diesel untuk industry sangat mirip dengan minyak diesel otomotif.
Minyak bakar no. 1 dan no. 2 serta kerosin, bahan bakar pesawat jet dan minyak diesel biasa disebut sebagai BBM distilat (distillate fuels).
Minyak bakar no. 4, no. 5 dan no. 6 dikenal dengan BBM residu, merupakan hasil sisa destilasi minyak bumi. Minyak bakar no. 4 adalah yang paling ringan di antara ketiganya. Minyak bakar no. 5 masih berupa cairan pada suhu di atas 10 oC sedangkan minyak bakar no. 6 harus dipanaskan terlebih dahulu untuk bisa mencair.
Produk-produk lain dari proses pengolahan minyak bumi, masih sangat bermanfaat seperti minyak pelumas, waxes (lilin), greases (gemuk), aspal dan kokas.

3.      Kegunaan

Di Indonesia, minyak bumi yang diolah banyak digunakan sebagai Bahan Bakar Minyak atau BBM, yang merupakan salah satu jenis bahan bakar yang digunakan secara luas di era industrialisasi.
Ada beberapa jenis BBM yang dikenal di Indonesia, di antaranya adalah:
·        Minyak tanah rumah tangga
·        Minyak tanah industri
·        Pertamax Racing
·        Pertamax
·        Pertamax Plus
·        Premium
·        Bio Premium
·        Bio Solar
·        Pertamina DEX
·        Solar transportasi
·        Solar industri
·        Minyak diesel
·        Minyak bakar


4.      Sifat Bahan Bakar Cair
a.       Densitas
Densitas didefinisikan sebagai perbandingan massa bahan bakar terhadap volum bahan bakar pada suhu acuan 15° C. Densitas diukur dengan suatu alat yang disebut hydrometer. Pengetahuan mengenai densitas ini berguna untuk penghitungan kuantitatif dan pengkajian kualitas penyalaan. Satuan densitas adalah kg/m3.
b.      Specific gravity
Didefinisikan sebagai perbandingan berat dari sejumlah volum minyak bakar terhadap berat air untuk volum yang sama pada suhu tertentu. Densitas bahan bakar, relatif terhadap air, disebut specific gravity. Specific gravity air ditentukan sama dengan 1. Karena specific gravity adalah perbandingan, maka tidak memiliki satuan. Pengukuran specific gravity biasanya dilakukan dengan hydrometer. Specific gravity digunakan dalam penghitungan yang melibatkan berat dan volum.
c.        Viskositas
Viskositas suatu fluida merupakan ukuran resistansi bahan terhadap aliran. Viskositas tergantung pada suhu dan berkurang dengan naiknya suhu. Viskositas diukur dengan Stokes / Centistokes. Kadang-kadang viskositas juga diukur dalam Engler, Saybolt atau Redwood. Tiap jenis minyak bakar memiliki hubungan suhu – viskositas tersendiri. Pengukuran viskositas dilakukan dengan suatu alat yang disebut Viskometer.
d.      Titik Nyala
Titik nyala suatu bahan bakar adalah suhu terendah dimana bahan bakar dapat dipanaskan sehingga uap mengeluarkan nyala sebentar bila dilewatkan suatu nyala api. Titik nyala untuk minyak tungku/ furnace oil adalah 66° C.

e.       Titik Tuang
Titik tuang suatu bahan bakar adalah suhu terendah dimana bahan bakar akan tertuang atau mengalir bila didinginkan dibawah kondisi yang sudah ditentukan. Ini merupakan indikasi yang sangat kasar untuk suhu terendah dimana bahan bakar minyak siap untuk dipompakan.
f.        Panas Jenis
Panas jenis adalah jumlah kKal yang diperlukan untuk menaikan suhu 1 kg minyak sebesar 10C. Satuan panas jenis adalah kkal/kg0C. Besarnya bervariasi mulai dari 0,22 hingga 0,28 tergantung pada specific gravity minyak. Panas jenis menentukan berapa banyak steam atau energi listrik yang digunakan untuk memanaskan minyak ke suhu yang dikehendaki. Minyak ringan memiliki panas jenis yang rendah, sedangkan minyak yang lebih berat memiliki panas jenis yang lebih tinggi.
g.      Nilai Kalor
Nilai kalor merupakan ukuran panas atau energi yang dihasilkan., dan diukur sebagai nilai kalor kotor/ gross calorific value atau nilai kalor netto/ nett calorific value. Perbedaannya ditentukan oleh panas laten kondensasi dari uap air yang dihasilkan selama proses pembakaran.
Nilai kalor kotor/. gross calorific value (GCV) mengasumsikan seluruh uap yang dihasilkan selama proses pembakaran sepenuhnya terembunkan/ terkondensasikan. Nilai kalor netto (NCV) mengasumsikan air yang keluar dengan produk pengembunan tidak seluruhnya terembunkan. Bahan bakar harus dibandingkan berdasarkan nilai kalor netto.
h.      Sulfur
Jumlah sulfur dalam bahan bakar minyak sangat tergantung pada sumber minyak mentah dan pada proses penyulingannya. Kandungan normal sulfur untuk residu bahan bakar minyak (minyak furnace) berada pada 2 - 4 %.
Kerugian utama dari adanya sulfur adalah resiko korosi oleh asam sulfat yang terbentuk selama dan sesudah pembakaran, dan pengembunan di cerobong asap, pemanas awal udara dan economizer.

i.        Kadar Abu
Kadar abu erat kaitannya dengan bahan inorganik atau garam dalam bahan bakar minyak. Kadar abu pada distilat bahan bakar diabaikan. Residu bahan bakar memiliki kadar abu yang tinggi. Garam-garam tersebut mungkin dalam bentuk senyawa sodium, vanadium, kalsium, magnesium, silikon, besi, alumunium, nikel, dll.
Umumnya, kadar abu berada pada kisaran 0,03 – 0,07 %. Abu yang berlebihan dalam bahan bakar cair dapat menyebabkan pengendapan kotoran pada peralatan pembakaran. Abu memiliki pengaruh erosi pada ujung burner, menyebabkan kerusakan pada refraktori pada suhu tinggi dapat meningkatkan korosi suhu tinggi dan penyumbatan peralatan.

j.        Residu Karbon
Residu karbon memberikan kecenderungan pengendapan residu padat karbon pada permukaan panas, seperti burner atau injeksi nosel, bila kandungan yang mudah menguapnya menguap. Residu minyak mengandung residu karbon 1 persen atau lebih.

k.      Kadar Air
Kadar air minyak bumi pada saat pemasokan umumnya sangat rendah sebab produk disuling dalam kondisi panas. Batas maksimum 1% ditentukan sebagai standar.
Air dapat berada dalam bentuk bebas atau emulsi dan dapat menyebabkan kerusakan dibagian dalam permukaan tungku selama pembakaran terutama jika mengandung garam terlarut. Air juga dapat menyebabkan percikan nyala api di ujung burner, yang dapat mematikan nyala api, menurunkan suhu nyala api atau memperlama penyalaan.


V.  BAHAN BAKAR GAS
Bahan bakar gas merupakan bahan bakar yang sangat memuaskan sebab hanya memerlukan sedikit handling dan sistim burner nya sangat sederhana dan hampir bebas perawatan. Gas dikirimkan melalui jaringan pipa distribusi sehingga cocok untuk wilayah yang berpopulasi tinggi atau padat industri. Walau begitu, banyak pemakai perorangan yang besar memiliki penyimpan gas, bahkan beberapa diantara mereka memproduksi gasnya sendiri.

1.      Jenis-Jenis Bahan Bakar Gas
Berikut adalah daftar jenis-jenis bahan bakar gas:
§ Bahan bakar yang secara alami didapatkan dari alam:
- Gas alam
- Metan dari penambangan batubara
§ Bahan bakar gas yang terbuat dari bahan bakar padat
- Gas yang terbentuk dari batubara
- Gas yang terbentuk dari limbah dan biomasa
- Dari proses industri lainnya (gas blast furnace)
§ Gas yang terbuat dari minyak bumi
- Gas Petroleum cair (LPG)
- Gas hasil penyulingan
- Gas dari gasifikasi minyak
§ Gas-gas dari proses fermentasi

Bahan bakar bentuk gas yang biasa digunakan adalah gas petroleum cair (LPG), gas alam, gas hasil produksi, gas blast furnace, gas dari pembuatan kokas, dll. Nilai panas bahan bakar gas dinyatakan dalam Kilokalori per normal meter kubik (kKal/Nm3) ditentukan pada suhu normal       (20 0 C) dan tekanan normal (760 mm Hg).

2.      Sifat-Sifat Bahan Bakar Gas
Karena hampir semua peralatan pembakaran gas tidak dapat menggunakan kadungan panas dari uap air, maka perhatian terhadap nilai kalor kotor (GCV) menjadi kurang. Bahan bakar harus dibandingkan berdasarkan nilai kalor netto (NCV). Hal ini benar terutama untuk gas alam, dimana kadungan hidrogen akan meningkat tinggi karena adanya reaksi pembentukan air selama pembakaran.

3.      LPG
LPG terdiri dari campuran utama propan dan Butan dengan sedikit persentase hidrokarbon tidak jenuh (propilen dan butilene) dan beberapa fraksi C2 yang lebih ringan dan C5 yang lebih berat. Senyawa yang terdapat dalam LPG adalah propan (C3H8), Propilen (C3H6), normal dan iso-butan (C4H10) dan Butilen (C4H8).
 LPG merupakan campuran dari hidrokarbon tersebut yang berbentuk gas pada tekanan atmosfir, namun dapat diembunkanmenjadi bentuk cair pada suhu normal, dengan tekanan yang cukup besar. Walaupun digunakan sebagai gas, namun untuk kenyamanan dan kemudahannya, disimpan dan ditransport dalam bentuk cair dengan tekanan tertentu. LPG cair, jika menguap membentuk gas dengan volum sekitar 250 kali.
Uap LPG lebih berat dari udara: butan beratnya sekitar dua kali berat udara dan propan sekitar satu setengah kali berat udara. Sehingga, uap dapat mengalir didekat permukaan tanah dan turun hingga ke tingkat yang paling rendah dari lingkungan dan dapat terbakar pada jarak tertentu dari sumber kebocoran. Pada udara yang tenang, uap akan tersebar secara perlahan. Lolosnya gas cair walaupun dalam jumlah sedikit, dapat meningkatkan campuran perbandingan volum uap/udara sehingga dapat menyebabkan bahaya. Untuk membantu pendeteksian kebocoran ke atmosfir, LPG biasanya ditambah bahan yang berbau. Harus tersedia ventilasi yang memadai didekat permukaan tanah pada tempat penyimpanan LPG. Karena alasan diatas, sebaiknya tidak menyimpan silinder LPG di gudang bawah tanah atau lantai bawah tanah yang tidak memiliki ventilasi udara.

4.      Gas Alam
Metan merupakan kandungan utama gas alam yang mencapai jumlah sekitar 95% dari volum total. Komponen lainnya adalah: Etan, Propan, Pentan, Nitrogen, Karbon Dioksida, dan gasgas lainnya dalam jumlah kecil. Sulfur dalam jumlah yang sangat sedikit juga ada. Karena metan merupakan komponen terbesar dari gas alam, biasanya sifat metan digunakan untuk membandingkan sifat-sifat gas alam terhadap bahan bakar lainnya.
Gas alam merupakan bahan bakar dengan nilai kalor tinggi yang tidak memerlukan fasilitas penyimpanan. Gas ini bercampur dengan udara dan tidak menghasilkan asap atau jelaga. Gas ini tidak juga mengandung sulfur, lebih ringan dari udara dan menyebar ke udara dengan mudahnya jika terjadi kebocoran.


VI. PRINSIP-PRINSIP PEMBAKARAN
1.      Proses pembakaran
Pembakaran merupakan oksidasi cepat bahan bakar disertai dengan produksi panas, atau panas dan cahaya. Pembakaran sempurna bahan bakar terjadi hanya jika ada pasokan oksigen yang cukup.
Oksigen (O2) merupakan salah satu elemen bumi paling umum yang jumlahnya mencapai 20.9% dari udara. Bahan bakar padat atau cair harus diubah ke bentuk gas sebelum dibakar. Biasanya diperlukan panas untuk mengubah cairan atau padatan menjadi gas. Bahan bakar gas akan terbakar pada keadaan normal jika terdapat udara yang cukup.
Hampir 79% udara (tanpa adanya oksigen) merupakan nitrogen, dan sisanya merupakan elemen lainnya. Nitrogen dianggap sebagai pengencer yang menurunkan suhu yang harus ada untuk mencapai oksigen yang dibutuhkan untuk pembakaran.
Nitrogen mengurangi efisiensi pembakaran dengan cara menyerap panas dari pembakaran bahan bakar dan mengencerkan gas buang. Nitrogen juga mengurangi transfer panas pada permukaan alat penukar panas, juga meningkatkan volum hasil samping pembakaran, yang juga harus dialirkan melalui alat penukar panas sampai ke cerobong.
Nitrogen ini juga dapat bergabung dengan oksigen (terutama pada suhu nyala yang tinggi) untuk menghasilkan oksida nitrogen (NOx), yang merupakan pencemar beracun. Karbon, hidrogen dan sulfur dalam bahan bakar bercampur dengan oksigen di udara membentuk karbon dioksida, uap air dan sulfur dioksida, melepaskan panas masing-masing 8.084 kkal, 28.922 kkal dan 2.224 kkal. Pada kondisi tertentu, karbon juga dapat bergabung dengan oksigen membentuk karbon monoksida, dengan melepaskan sejumlah kecil panas (2.430 kkal/kg karbon). Karbon terbakar yang membentuk CO2 akan menghasilkan lebih banyak panas per satuan bahan bakar daripada bila menghasilkan CO atau asap.
Setiap kilogram CO yang terbentuk berarti kehilangan panas 5654 kKal (8084 – 2430).




2.      Pembakaran Tiga T ( Pembakaran Sempurna )
Tujuan dari pembakaran yang baik adalah melepaskan seluruh panas yang terdapat dalam bahan bakar. Hal ini dilakukan dengan pengontrolan “tiga T” pembakaran yaitu :
(1) Temperature
Suhu yang cukup untuk menyalakan dan menjaga penyalaan bahan bakar,
(2) Turbulence
Turbulensi atau pencampuran oksigen dan bahan bakar yang baik,
(3) Time
Waktu yang cukup untuk pembakaran yang sempurna.

Gambar 1.1. Pembakaran yang sempurna, yang baik dan tidak sempurna


Tidak ada komentar:

Posting Komentar